Profit Maximizing Mechanisms

Jeffrey Ely

November 12, 2009

(i) (3) ()

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Normative vs. Positive

- Until now we have been studying institutions from the point of efficiency.

Normative vs. Positive

- Until now we have been studying institutions from the point of efficiency.
- The answer to "how should institutions perform?"

Normative vs. Positive

- Until now we have been studying institutions from the point of efficiency.
- The answer to "how should institutions perform?"
- That is normative economics.

Normative vs. Positive

- Until now we have been studying institutions from the point of efficiency.
- The answer to "how should institutions perform?"
- That is normative economics.
- We do this so that we can evaluate existing institutions.

Normative vs. Positive

- Until now we have been studying institutions from the point of efficiency.
- The answer to "how should institutions perform?"
- That is normative economics.
- We do this so that we can evaluate existing institutions.
- positive economics.

Normative vs. Positive

- Until now we have been studying institutions from the point of efficiency.
- The answer to "how should institutions perform?"
- That is normative economics.
- We do this so that we can evaluate existing institutions.
- positive economics.
- But we can use similar ideas to understand how existing institutions operate.

Normative vs. Positive

- Until now we have been studying institutions from the point of efficiency.
- The answer to "how should institutions perform?"
- That is normative economics.
- We do this so that we can evaluate existing institutions.
- positive economics.
- But we can use similar ideas to understand how existing institutions operate.
- To illustrate, we will analyze auctions as mechanisms for maximizing profits.

Normative vs. Positive

- Until now we have been studying institutions from the point of efficiency.
- The answer to "how should institutions perform?"
- That is normative economics.
- We do this so that we can evaluate existing institutions.
- positive economics.
- But we can use similar ideas to understand how existing institutions operate.
- To illustrate, we will analyze auctions as mechanisms for maximizing profits.
- And we will compare profit-maximizing auctions to efficient auctions.

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.
- He would incur a cost $c>0$ were he to sell.

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.
- He would incur a cost $c>0$ were he to sell.
- He has some potentially interested buyers.

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.
- He would incur a cost $c>0$ were he to sell.
- He has some potentially interested buyers.
- Each buyer i has a value v_{i} from obtaining the good.

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.
- He would incur a cost $c>0$ were he to sell.
- He has some potentially interested buyers.
- Each buyer i has a value v_{i} from obtaining the good.
- The seller does not know v_{i}.

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.
- He would incur a cost $c>0$ were he to sell.
- He has some potentially interested buyers.
- Each buyer i has a value v_{i} from obtaining the good.
- The seller does not know v_{i}.
- If the seller did know v_{i} the problem would be simple.

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.
- He would incur a cost $c>0$ were he to sell.
- He has some potentially interested buyers.
- Each buyer i has a value v_{i} from obtaining the good.
- The seller does not know v_{i}.
- If the seller did know v_{i} the problem would be simple.
- Find the buyer with the highest v_{i} and make a take-it-or-leave-it offer asking for price v_{i}.

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.
- He would incur a cost $c>0$ were he to sell.
- He has some potentially interested buyers.
- Each buyer i has a value v_{i} from obtaining the good.
- The seller does not know v_{i}.
- If the seller did know v_{i} the problem would be simple.
- Find the buyer with the highest v_{i} and make a take-it-or-leave-it offer asking for price v_{i}.
- We can think of the seller's problem as trying to design a mechanism so that

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.
- He would incur a cost $c>0$ were he to sell.
- He has some potentially interested buyers.
- Each buyer i has a value v_{i} from obtaining the good.
- The seller does not know v_{i}.
- If the seller did know v_{i} the problem would be simple.
- Find the buyer with the highest v_{i} and make a take-it-or-leave-it offer asking for price v_{i}.
- We can think of the seller's problem as trying to design a mechanism so that
- The buyers have an incentive to tell the seller truthfully their values.

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.
- He would incur a cost $c>0$ were he to sell.
- He has some potentially interested buyers.
- Each buyer i has a value v_{i} from obtaining the good.
- The seller does not know v_{i}.
- If the seller did know v_{i} the problem would be simple.
- Find the buyer with the highest v_{i} and make a take-it-or-leave-it offer asking for price v_{i}.
- We can think of the seller's problem as trying to design a mechanism so that
- The buyers have an incentive to tell the seller truthfully their values.
- The seller's profit is maximized among all such incentive-compatible mechanisms.

The Profit-Maximization Problem

- Suppose that a seller has an object that he is potentially interested in selling.
- He would incur a cost $c>0$ were he to sell.
- He has some potentially interested buyers.
- Each buyer i has a value v_{i} from obtaining the good.
- The seller does not know v_{i}.
- If the seller did know v_{i} the problem would be simple.
- Find the buyer with the highest v_{i} and make a take-it-or-leave-it offer asking for price v_{i}.
- We can think of the seller's problem as trying to design a mechanism so that
- The buyers have an incentive to tell the seller truthfully their values.
- The seller's profit is maximized among all such incentive-compatible mechanisms.
- Note that the seller has no direct reason to care about efficient allocation.

English Auction

- At this level of generality, the problem is beyond the scope of this class.

English Auction

- At this level of generality, the problem is beyond the scope of this class.
- But we can get the main insight with a simpler problem.

English Auction

- At this level of generality, the problem is beyond the scope of this class.
- But we can get the main insight with a simpler problem.
- Let's assume that the seller uses an English auction. This is natural because the English auction has some advantages.

English Auction

- At this level of generality, the problem is beyond the scope of this class.
- But we can get the main insight with a simpler problem.
- Let's assume that the seller uses an English auction. This is natural because the English auction has some advantages.
- The winning bidder never reveals his true value. This prevents the seller from trying to renegotiate.

English Auction

- At this level of generality, the problem is beyond the scope of this class.
- But we can get the main insight with a simpler problem.
- Let's assume that the seller uses an English auction. This is natural because the English auction has some advantages.
- The winning bidder never reveals his true value. This prevents the seller from trying to renegotiate.
- The bidders have dominant strategies.

English Auction

- At this level of generality, the problem is beyond the scope of this class.
- But we can get the main insight with a simpler problem.
- Let's assume that the seller uses an English auction. This is natural because the English auction has some advantages.
- The winning bidder never reveals his true value. This prevents the seller from trying to renegotiate.
- The bidders have dominant strategies.
- The seller can control the reserve price.

Reserve Prices

- We know that an English auction is equivalent to a Vickrey auction so we will think in terms of the Vickrey auction.

Reserve Prices

- We know that an English auction is equivalent to a Vickrey auction so we will think in terms of the Vickrey auction.
- The game works as follows.

Reserve Prices

- We know that an English auction is equivalent to a Vickrey auction so we will think in terms of the Vickrey auction.
- The game works as follows.
- The seller chooses a reserve price r.

Reserve Prices

- We know that an English auction is equivalent to a Vickrey auction so we will think in terms of the Vickrey auction.
- The game works as follows.
- The seller chooses a reserve price r.
- The buyers submit their bids.

Reserve Prices

- We know that an English auction is equivalent to a Vickrey auction so we will think in terms of the Vickrey auction.
- The game works as follows.
- The seller chooses a reserve price r.
- The buyers submit their bids.
- The high bidder wins if his bid exceeds the reserve price.

Reserve Prices

- We know that an English auction is equivalent to a Vickrey auction so we will think in terms of the Vickrey auction.
- The game works as follows.
- The seller chooses a reserve price r.
- The buyers submit their bids.
- The high bidder wins if his bid exceeds the reserve price.
- He pays the second-high bid, or the reserve price, whichever is higher.

Reserve Prices

- We know that an English auction is equivalent to a Vickrey auction so we will think in terms of the Vickrey auction.
- The game works as follows.
- The seller chooses a reserve price r.
- The buyers submit their bids.
- The high bidder wins if his bid exceeds the reserve price.
- He pays the second-high bid, or the reserve price, whichever is higher.
- The losing bidders pay nothing.

Example: 2 Bidders

The bidders' values and the seller's cost.

Example: 2 Bidders

The utilitarian decision rule. This can be achieved by setting a reserve price $r=c$.

Example: 2 Bidders

What if the seller used a reserve price higher than c ? (She would never use a lower reserve.)

Example: 2 Bidders

If the values are $v=\left(v_{1}, v_{2}\right)$, where $v_{1}>r$ but $v_{2}<r$ then bidder 1 wins.

Example: 2 Bidders

If the reserve price was c, then 1 would pay v_{2}.

Example: 2 Bidders

Since $v_{2}<r$, with a reserve price of r, bidder 1 pays r instead. Good for the seller.

Example: 2 Bidders

If the losing bidder's bid is above r, then there is no difference between a reserve price of r vs c.

Example: 2 Bidders

If the winning bidder's bid is less than r but greater than c, then the higher reserve price r winds up costing the seller a sale.

Example: 2 Bidders

Here are all the cases where the seller increases profit by using the higher reserve price.

Example: 2 Bidders

Here are all the cases where the seller loses profit by using the higher reserve price.

Example: 2 Bidders

Notice that the buyers are always worse off from the higher reserve.

Which Effect is Bigger?

- The seller has to chose the reserve price without knowing what v is.

Which Effect is Bigger?

- The seller has to chose the reserve price without knowing what v is.
- So she doesn't know in advance whether he will gain or lose from a high reserve price.

Which Effect is Bigger?

- The seller has to chose the reserve price without knowing what v is.
- So she doesn't know in advance whether he will gain or lose from a high reserve price.
- Assume that the seller attaches probabilities to different possible v's.

Which Effect is Bigger?

- The seller has to chose the reserve price without knowing what v is.
- So she doesn't know in advance whether he will gain or lose from a high reserve price.
- Assume that the seller attaches probabilities to different possible v 's.
- Then the seller wants to trade off expected gains and losses.

Which Effect is Bigger?

- The seller has to chose the reserve price without knowing what v is.
- So she doesn't know in advance whether he will gain or lose from a high reserve price.
- Assume that the seller attaches probabilities to different possible v 's.
- Then the seller wants to trade off expected gains and losses.
- The seller's profit maximization problem is

$$
\max _{r} \int_{v_{1}, v_{2}} \max \left\{0, \min \left\{v_{1}, v_{2}\right\}-r\right\} F(v) d v
$$

FAIL

A Simpler Approach

For our purposes we just want to know whether the seller will set $r=c$ or something higher.

- Define the total expected welfare (buyers' utility plus seller's profit) as $W(r)$.

A Simpler Approach

For our purposes we just want to know whether the seller will set $r=c$ or something higher.

- Define the total expected welfare (buyers' utility plus seller's profit) as $W(r)$.
- Define the buyers' total expected utility as $U(r)$.

A Simpler Approach

For our purposes we just want to know whether the seller will set $r=c$ or something higher.

- Define the total expected welfare (buyers' utility plus seller's profit) as $W(r)$.
- Define the buyers' total expected utility as $U(r)$.
- Then the seller's profit $\Pi(r)$ satisfies the identity

$$
\Pi(r)=W(r)-U(r)
$$

A Simpler Approach

For our purposes we just want to know whether the seller will set $r=c$ or something higher.

- Define the total expected welfare (buyers' utility plus seller's profit) as $W(r)$.
- Define the buyers' total expected utility as $U(r)$.
- Then the seller's profit $\Pi(r)$ satisfies the identity

$$
\Pi(r)=W(r)-U(r)
$$

- We know that

A Simpler Approach

For our purposes we just want to know whether the seller will set $r=c$ or something higher.

- Define the total expected welfare (buyers' utility plus seller's profit) as $W(r)$.
- Define the buyers' total expected utility as $U(r)$.
- Then the seller's profit $\Pi(r)$ satisfies the identity

$$
\Pi(r)=W(r)-U(r)
$$

- We know that
- Total welfare is maximized by the utilitarian solution $r=c$.

A Simpler Approach

For our purposes we just want to know whether the seller will set $r=c$ or something higher.

- Define the total expected welfare (buyers' utility plus seller's profit) as $W(r)$.
- Define the buyers' total expected utility as $U(r)$.
- Then the seller's profit $\Pi(r)$ satisfies the identity

$$
\Pi(r)=W(r)-U(r)
$$

- We know that
- Total welfare is maximized by the utilitarian solution $r=c$.
- The buyers' utility is unambiguoulsy reduced by raising r.
$r>c$

Total welfare is maximized at $r=c$. The curve is flat there.
$r>c$

Buyers' utility is decreasing.
$r>c$

This means that seller profit must be increasing at $r=c$.

