The Vickrey-Clarke-Groves Mechanism

Jeffrey Ely

July 8, 2009

• • •

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Jeffrey Ely The Vickrey-Clarke-Groves Mechanism

Dealing with Externalities

- We saw that the Vickrey auction was no longer efficient when there are externalities.
- But we can modify the rules to restore efficiency.
- Recall the example from last time:

	Х	Y	Ζ
X	V_X	0	0
y	0	V_{y}	-5
Ζ	0	0	V _Z

- Modified auction:
 - Subtract 5 from z's bid. Set $\hat{b}_z = b_z 5$
 - Award the object to the highest bidder where we use \hat{b}_z for z.
 - If x or y win, they pay the highest losing bid, again using \hat{b}_z .
 - If z wins, she pays the highest losing bid plus 5.

- But what if we don't know the level of the externality?
- And what about other problems? The designer dress problem?

	Blue	Red
Chris	$v_c(blue)$	$v_c(\text{Red})$
Pat	$v_p(blue)$	$v_c(Red)$

• It is possible to construct an efficient mechanism in all of these examples, but rather than do this case by case, we will derive an umbrella mechanism that works in a whole range of cases.

Return now to the general social choice setup.

- A society consisting of *n* individuals
- A set A of alternatives from which to choose.
- $v_i(x)$ is the value to *i* from alternative $x \in A$ being chosen.
- Monetary transfer scheme $t = (t_1, \ldots, t_n)$.

Thought Experiment

- Suppose for the moment that we know the value functions v_i of each individual *i*.
- We compute the utilitarian alternative x^* .
- Let's measure how much each individual *i* "contributes to the rest of society."

Thought Experiment

• First compute

$$\sum_{j\neq i} v_j(x^*)$$

- This is the total welfare of the society (not counting *i*).
- Next, let's ask how this would change if *i* were not a memer of society.
- We find the utilitarian alternative for the society which consists of all individuals *except i*.
- Call that x_{-i}^* . It will generally be different from x^* . We compute

$$\sum_{j\neq i} v_j(x_{-i}^*)$$

The difference

$$\sum_{j\neq i} v_j(x^*) - \sum_{j\neq i} v_j(x^*_{-i})$$

is a measure of how much i contributes to the rest of society. (It will often be negative, for example in the auction context.)

The Vickrey-Clarke-Groves Mechanism

We will construct a game in which player *i* receives a monetary transfer equal to the amount he contributes to the rest of society.

- The players are the members of society.
- The actions: each player will make a claim about his valuation function.
 - Recall that v_i is *i*'s true valuation function.
 - So $v_i(x)$ is *i*'s true value for alternative x.
 - Each player *i* will announce a valuation function \hat{v}_i .
 - The announcements are simulataneous.
 - So $\hat{v}_i(x)$ is *i*'s stated valuation of alternative *x*.
 - She might announce $\hat{v}_i \neq v_i$, i.e. she might lie.
 - Since only she knows the true v_i there is no way to know whether she is telling the truth.
 - We need to give her the right incentives to tell the truth.

Outcomes

- When the players announce $\hat{v} = (\hat{v}_1, \hat{v}_2, \dots, \hat{v}_n)$, the utilitarian alternative for \hat{v} is enacted. Call it $x^*(\hat{v})$.
- Remember that the utilitarian alternative maximizes the sum of the (announced) valuations, i.e.

$$\sum_{j=1}^n \hat{v}_j(\mathbf{x^*}(\hat{\mathbf{v}})) \ge \sum_{j=1}^n \hat{v}_j(\mathbf{x})$$

for any other alternative x.

• The last detail to specify is how monetary transfers are determined.

The VCG Transfer Rule

- Recall that in our notation \hat{v}_{-i} refers to the list of announcements by everyone other than *i*.
- Let $x^*(\hat{v}_{-i})$ represent the utilitarian alternative for the society that excludes *i*.

$$\sum_{j\neq i} \hat{v}_j(x^*(\hat{v}_{-i})) \ge \sum_{j\neq i} \hat{v}_j(x)$$

for any other alternative x.

• In the VCG mechanism, when the list of announced valuation functions is \hat{v} , player *i* receives the transfer $t_i(\hat{v})$ defined as follows

$$t_i(\hat{\mathbf{v}}) = \sum_{j \neq i} \hat{\mathbf{v}}_j(\mathbf{x}^*(\hat{\mathbf{v}})) - \sum_{j \neq i} \hat{\mathbf{v}}_j(\mathbf{x}^*(\hat{\mathbf{v}}_{-i})).$$

The Vickrey Auction is a Special Case

Consider the simple problem of allocating a prize and apply the VCG transfer rule.

- If *i* reports the highest valuation,
 - then $x^*(\hat{v}) =$ "give the prize to *i*"
 - ▶ and x^{*}(v̂_{-i}) = "give the prize to the individual k with the second-highest value"

$$\sum_{j\neq i} \hat{v}_j(\mathbf{x}^*(\hat{\mathbf{v}})) - \sum_{j\neq i} \hat{v}_j(\mathbf{x}^*(\hat{\mathbf{v}}_{-i})) = 0 - \hat{v}_k = -\hat{v}_k.$$

- If *i* does not report the highest valuation,
 - then $x^*(\hat{v}) =$ "give the prize to the individual / with the highest value"
 - ▶ and x*(v̂_{-i}) = "give the prize to the individual *I* with the highest value"

$$\sum_{j\neq i} \hat{v}_j(\mathbf{x}^*(\hat{\mathbf{v}})) - \sum_{j\neq i} \hat{v}_j(\mathbf{x}^*(\hat{\mathbf{v}}_{-i})) = \hat{v}_i - \hat{v}_i = 0.$$

The VCG is an Efficient Mechanism

- The VCG mechanism is defined not just for auctions but for any social choice problem.
- We will show that the VCG mechanism is efficient:
 - All individuals have a dominant strategy to announce their true valuations.
 - When they do so, the utilitarian alternative is enacted by the VCG mechanism.
- By construction the mechanism picks the utilitarian alternative for the announced valuations, i.e. x*(v̂). So once we show the first property, we will have that v̂ = v and so x*(v) will be chosen, satisfying the second property.

Announcing Truthfully is a Dominant Strategy

- We need to show that announcing truthfully v
 _i = v_i is the best strategy no matter what the other individuals announce, i.e. no matter what v
 _{-i} is.
- If the others announce \hat{v}_{-i} and *i* announces \hat{v}_i , *i*'s utility is

$$v_i(x^*(\hat{v}_i, \hat{v}_{-i})) + t_i(\hat{v}_i, \hat{v}_{-i})$$

we substitute the VCG transfer formula for t_i :

$$v_i(x^*(\hat{v}_i, \hat{v}_{-i})) + \sum_{j \neq i} \hat{v}_j(x^*(\hat{v}_i, \hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_j(x^*(\hat{v}_{-i})).$$

 Player *i* has to decide what *v_i* to announce. It will determine x^{*}(*v_i*, *v_{-i}*) but not x^{*}(*v_{-i}*). So we can ignore the last term since it is unaffected by *i*'s announcement.

Announcing Truthfully is a Dominant Strategy

• Suppose for the moment that *i* could choose the alternative *x* directly. What *x* would maximize

$$v_i(\mathbf{x}) + \sum_{j \neq i} \hat{v}_j(\mathbf{x})$$

• The answer is
$$x = x^*(v_i, \hat{v}_{-i})$$
.

- But *i* cannot choose x directly, he can only choose \hat{v}_i and then $x^*(\hat{v}_i, \hat{v}_{-i})$ will be chosen.
- So announcing truthfully is the best thing he can do.

More Applications

Let's revisit the auction with externalities and compute the VCG transfers. Suppose the players report $\hat{\nu}$ and

- The efficient allocation is Z, i.e. $x^*(\hat{v}) = Z$. How much does z pay?
 - The first term in the formula ∑_{j≠z} v_j(Z) = −5 because of the negative externality on y.
 - ▶ The second term, $\sum_{j \neq z} v_j(x^*(\hat{v}_{-z}))$ equals the second-highest value as usual.
 - ► Thus, according to the VCG rule z receives -5 minus the second-highest value.
- The efficient allocation is X, i.e. $x^*(\hat{v}) = X$. How much does x pay?
 - The first term in the formula $\sum_{j \neq z} v_j(X)$ equals zero.
 - So he receives 0 minus the second term, i.e. he pays the second term. The second term equals

$$\star v_y \text{ if } x^*(\hat{v}_{-x}) = Y.$$

★
$$v_z - 5$$
 if $x^*(\hat{v}_{-x}) = Z$.

More Applications

The designer dress example.

- An alternative is a specification of who wears which dress.
- Suppose that according to their announced valuations, they prefer opposite dresses, e.g,
 - Then for each individual *i*, $x^*(\hat{v}) = x^*(\hat{v}_{-i})$, so the payment is zero.
 - Idea: no conflict, no need for monetary payments.
- But if each announces that they prefer the same dress, then
 - > The one announcing the higher value gets their preferred dress.
 - And pays the other's announced value.
 - ► Idea: when there is conflict it is resolved using a Vickrey auction.

The Espresso Machine

- Two roomates, with willingness to pay v_1 , v_2 for an espresso machine
- The cost of the machine is \$50.
- We considered two mechanisms that were not efficient
 - Split the cost. (didnt achive the utilitarian solution)
 - Bargaining game. (no dominant strategies)

The VCG mechanism in the Espresso Machine Problem

- Lets apply the VCG mechanism.
- We must include the individual who owns the machine.
- His value for keeping the machine is 50.
- Suppose $\hat{v}_1 + \hat{v}_2 \ge 50$. but $\hat{v}_2 < 50$ and $\hat{v}_1 < 50$.
- VCG mechanism specifies that the machine should be purchased.
- VCG payments:
 - first term: $\sum_{j \neq 1} \hat{v}_j(x^*(\hat{v})) = \hat{v}_2$
 - second term:
 - ★ Because $\hat{v}_2 < 50$, we get $x^*(\hat{v}_{-1})$ is not to buy the machine.
 - * $\sum_{j \neq 1} \hat{v}_j(x^*(\hat{v}_{-1})) = 50$. (owner keeps machine)
 - ★ So 1 receives $\hat{v}_2 50$, i.e. he pays $50 \hat{v}_2$.
 - ★ Likewise 2 pays $50 \hat{v}_1$.
- What is the sum of the contributions from the two players?
- Answer: $50 \hat{v}_1 + 50 \hat{v}_2 = 100 (\hat{v}_1 + \hat{v}_2).$
- This is less than \$50.
- That is a problem.

Is there any mechanism which is efficient and doesn't result in a deficit?

Recall the diagram for the utilitarian decision rule.

Is there any mechanism which is efficient and doesn't result in a deficit?

Suppose 2 announces willingness to pay \hat{v}_2 . If the machine is purchased, how much should 1 be required to pay?

Is there any mechanism which is efficient and doesn't result in a deficit?

We will show that 1 should be required to pay p^* .

Is there any mechanism which is efficient and doesn't result in a deficit?

Suppose instead that the price was set at $p > p^*$.

Is there any mechanism which is efficient and doesn't result in a deficit?

In this case 1 would have an incentive to lie when he has a willingness to pay v_1 that is between p^* and p. (He would want to understate his value.)

Is there any mechanism which is efficient and doesn't result in a deficit?

On the other hand, if the price were set below p^* , say at $p < p^*$, ...

Is there any mechanism which is efficient and doesn't result in a deficit?

Then when 1's value is v_1 , between p and p^* , 1 has an incentive to overstate his value.

Is there any mechanism which is efficient and doesn't result in a deficit?

Thus, 1 must pay p^* . In this case, 1 will truthfully report his value, whatever it is.

Is there any mechanism which is efficient and doesn't result in a deficit?

When we do this for all possible announcements \hat{v}_2 for player 2, we trace out the transfer rule for 1.

Is there any mechanism which is efficient and doesn't result in a deficit?

This means that 1 always pays $50 - \hat{v}_2$. Exactly as in the VCG mechanism.

The VCG mechanism is the Only Efficient Mechanism

- Since the VCG mechanism is the only mechanism that
 - Makes truthtelling a dominant strategy
 - Implements the utilitarian rule
- And since the VCG mechanism yields a budget deficit,
- There is no budget balanced, efficient mechanism for this social choice problem.
- Ok then, the "first-best" is not attainable. What's the best we can do with a budget-balanced mechanism? (The "second-best.")